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Evolution and stability of altruist strategies in microbial games
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When microbes compete for limited resources, they often engage in chemical warfare using bacterial toxins.
This competition can be understood in terms of evolutionary game theory (EGT). We study the predictions of EGT
for the bacterial “suicide bomber” game in terms of the phase portraits of population dynamics, for parameter
combinations that cover all interesting games for two-players, and seven of the 38 possible phase portraits of
the three-player game. We compare these predictions to simulations of these competitions in finite well-mixed
populations, but also allowing for probabilistic rather than pure strategies, as well as Darwinian adaptation over
tens of thousands of generations. We find that Darwinian evolution of probabilistic strategies stabilizes games of
the rock-paper-scissors type that emerge for parameters describing realistic bacterial populations, and point to
ways in which the population fixed point can be selected by changing those parameters.
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I. INTRODUCTION

Evolutionary game theory (EGT) [1–3] has become one of
the pillars of evolutionary biology because it is a mathemati-
cally accessible framework that can account for the strategic
aspect of frequency-dependent fitness, that is, if the fitness of
a genotype depends on the frequency of other genotypes in the
population. EGT is particularly useful when dealing with pop-
ulations that include a mix of different strategies, and takes into
account the concept of “inclusive fitness” that encompasses
how an organism contributes to the fitness of other genetically
similar or even different types [4–6]. Consequently, EGT has
been used to study the conditions for the emergence, mainte-
nance, and evolution of cooperation as well as altruism [7–9].
Of particular importance is the application of EGT to microbial
communities (see, e.g., [10]). The competitive interaction
between microbes (and even viruses [11,12]) is often best de-
scribed within the language of games [13–15], and they display
cooperative and other types of social behavior [16], cheating
[17], and even an extreme form of altruism where some com-
munity members sacrifice themselves for the sake of others.
Another hallmark of microbial community dynamics is the
observation of cyclically competing species with nontransitive
relationships [18]. Of particular interest is EGT’s prediction of
evolutionary fixed points for some dynamical interactions but
not others, and characterization of the stability of orbits within
the phase space of strategies. However, how these predictions
compare to realistic dynamics of adapting populations of cells,
in particular those making stochastic decisions [19], is not al-
ways clear. Here, we study the predictions of EGT as applied to
a simple bacterial system where different strategies of survival
potentially coexist in the same population, or where strategic
decisions are made stochastically rather than deterministically.
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Among the weapons that bacteria use to battle each other
is the production of colicin, a bacterial toxin that is lethal to
most strains of E. coli bacteria. Those strains that can produce
the toxin are usually unharmed by it due to a resistance gene
encoded on a plasmid within the cell. The individual that
actually deploys the toxin, however, pays the ultimate price
as that cell literally explodes to distribute the toxin to as large
a fraction of the population as possible. This ultimate act
of altruism is beneficial to the kin of the “suicide bomber”
because it frees up the resource that both sensitive and resistant
types are using, for the sole benefit of the resistant types.
This system has been studied experimentally [18,20], and its
dynamics studied in terms of payoff matrices [21]. Some of the
dynamics we observe fall into the rock-paper-scissors (RPS)
category of games, which have been studied analytically and
experimentally [1,2,10,18,22–25] (see also the review [26]).
We study the EGT predictions of the equilibrium frequency
of strategies in the population (when this equilibrium exists),
how this equilibrium is modified when additional strategies
can be produced via mutations, and how EGT predictions fare
when population sizes are finite. To study these predictions
we use different numerical simulation methods, and in
particular study strategies that evolve via mutation and
selection in a purely Darwinian manner [27]. Furthermore,
because the expression of the toxin is probabilistic in nature
(experimentally, only between 1% and 5% of the bacteria that
carry the toxin plasmid actually express it [20,21]), we study
fully stochastic strategies with evolvable probabilities. In the
following, we first introduce the notation and a discussion of
equilibrium points in the well-known two-player game, setting
the stage for a similar analysis of the three-player game.

II. TWO-PLAYER SUICIDE BOMBER GAME

Evolutionary game theory makes accurate predictions about
the outcome of two-player games, whether the strategies
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are deterministic (“pure” strategies) or probabilistic (“mixed”
strategies, where a player uses different pure strategies with
different probabilities). The central concept of EGT is the
“evolutionary stable strategy” (ESS): If only one strategy is
determined to be an ESS, we should find this and only this
strategy to be the winner in a competition. In a game with
two strategies I and J , I is an ESS if the payoff E(I,I ) when
playing itself is larger than the payoff E(J,I ) between I and
any other strategy J ; i.e., [1]

I is ESS if E(I,I ) > E(J,I ). (1)

In case E(I,I ) = E(J,I ), then I is an ESS if the strategy plays
better against any other strategy J than that other strategy fares
against itself:

E(I,J ) > E(J,J ) when E(I,I ) = E(J,I ). (2)

In principle, a mixture of strategies can be an ESS. So introduce
the population mixture described by the vector p = (pI ,pJ )
where pI is the population fraction of strategy I and pI +
pJ = 1. Then p̂ is an ESS if (and only if) for all q (see,
e.g., [2])

p̂ · Ep̂ ! q · Ep̂, (3)

and at the same time

if q != p̂ and p̂ · Ep̂ = q · Ep̂, then p̂ · Eq > q · Eq.

(4)

Here, E is the payoff matrix introduced above. Equations (3)
and (4) are just the population generalizations of Eqs. (1) and
(2). Condition (3) defines the Nash equilibrium point of the
population, while (4) is the stability condition for the Nash
equilibrium. It turns out, however, that the concept of an ESS
is not as general as one might wish, because while every ESS is
a stable attractor of the population dynamics (in the language
of dynamical systems theory), not every stable attractor is
an ESS [28–30]. Thus, instead of focusing on ESSs, in the
following we study the fixed points and phase portraits of the
dynamics that the payoff matrix induces.

In the two-player “suicide bomber” game of colicin
warfare, the payoff between the wild type (which we denote
here as strain “00”) and the colicin-producing (but resistant)
type “RT” is such that E(00,00) = 1, but E(00,RT) = 0; that
is, a wild-type strain is killed by a strain expressing the toxin.
On the other hand, RT is itself inferior to the wild type because
it carries the cost of that resistance, so E(RT,RT) < 1. Finally,
E(RT,00) > 1, expressing the advantage the colicin producer
has due to the suicidal behavior of its kin [21]. Note that the
cost of resistance is typically of the order of 15% of wild-type
fitness, but can be as small as 1% [31] or as large as 60% [32].
The cost of producing the colicin (including the reduction of
growth rate by cell lysing) may be even higher, depending
on the frequency with which colicin is being produced [32].
Our notation “00” and “RT” for the two different types comes
from the observation that the production and the resistance of
colicin in bacteria are usually encoded by two different genes
(“R” for resistance and “T” for toxin), but most often within
the same plasmid.

We study a model in which two parameters govern the
interaction between types, the benefit ε ! 0 of expressing

the toxin and the cost ω ! 0, and vary these parameters
systematically. In principle, the two genes R and T could each
carry a different cost, but for most of the calculations in this
study we will keep them the same. The ESS is determined by
the following payoff matrix E:

00
RT




00 RT
1 0

1 − 2ω + ε 1 − 2ω



 . (5)

The advantage ε is a variable that depends on the spatial
structure of the environment and the distribution of types in
it, because suicide behavior will be more effective when the
resource that is freed up is more likely to be used by the
resistant kind. Thus, we study what strategy is an ESS as a
function of the parameters ω and ε. In terms of the more
conventional notation of two-player games we have R = 1,
S = 0, T = 1 − 2ω + ε, and P = 1 − 2ω; that is, 00 is the
cooperating type. Because payoff matrices that only differ
when adding a constant to each column induce the same
dynamics, we can bring the matrix into normal form so that
the diagonal vanishes:

E =
(

0 2ω − 1
ε − 2ω 0

)
. (6)

The fixed points, stability, and phase portrait of such games
have been solved (see, e.g, [26,30]). The dynamics fall into four
regions that harbor three different phase portraits. In region I,
defined by ω < 1/2, ω < ε/2, we find the standard prisoner’s
dilemma, where the “defecting” strategy is ESS as well as an
attractor. We indicate in Fig. 1 the parameter region for this dy-
namics, along with a pictogram that describes the phase portrait
with the convention that solid circles represent attractors and
open circles denote repellers. Thus, in this language the wild
type is the cooperator and the suicide bomber the defector.
For ω > 1/2, ω > ε/2 (region II) there is no dilemma and
the wild type is the ESS. When ω > 1/2, ω < ε/2 (region
III), the game is an “anticoordination game” sometimes called

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

RT00

RT 00

00 RT

RT00

I

II

III

IV

FIG. 1. Fixed points and flow for different two-player games
as a function of game parameters, for ω ∈ (0,1) and ε ∈ (0,2).
Region I, prisoner’s dilemma; region II, “harmony” game; region III,
“snowdrift” game; region IV, “coordination” game (see, e.g., [10]).
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“snowdrift” or “hawk-dove,” giving rise to a stable population
mixture of strategies as indicated by the fixed point along the
trajectory connecting the wild type and the suicidal type RT,
with p00 = 2ω−1

ε−1 . If on the other hand ω < 1
2 and ω > ε/2

(region IV), both strategies are an ESS as well as attractors,
and the ultimate winner depends on which strategy is more
abundant at the start of the competition, as was observed in
the Chao-Levin experiment [20] in a well-mixed environment.
Note that this regime corresponds to a “coordination” game. If
strategies are probabilistic, Eqs. (3) and (4) predict dominance
of a mixed strategy with the probability to engage in 00 play
given by the p00 shown above [1]. The different predicted
phases are consistent with those observed for competitions
between sensitive and resistant types on a lattice [33]. We can
confirm the predictions of EGT by numerical simulation of the
population dynamics using replicator equations [1,2]:

ṗ00(t) = p00(t)(w00 − w̄), (7)

w̄ = p00(t)w00 + [1 − p00(t)] wRT, (8)

with

w00 = p00E(00,00) + (1 − p00)E(00,RT), (9)

wRT = p00E(RT,00) + (1 − p00)E(RT,RT). (10)

We show the result of this simulation in Fig. 2(a), where
both strategies were initialized with p = 0.5. The replicator
equation simulations recapitulate the phase portraits in Fig. 1.

We can also compare the EGT prediction to a simulation
of the evolution of agents that receive payoffs (5) in a finite
(but large) well-mixed population of 16 384 interacting agents.
Here, each player’s strategy is determined by a “genome” with
a single locus p00 that stands for the probability to engage in
action 00. For each agent, we randomly pick four opponents,
and the aggregate score against them is used as a fitness. We
replace 2% of the population at each update, using a death-birth
Moran process [34] (for more details on the simulations, see
Sec. III C). If we start the population with 50% genotypes
reflecting the wild type (p00 = 1) and 50% expressing the RT
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FIG. 2. (Color) ESS as a function of the parameters ε and ω.
(a) Numerical simulation of the population frequencies based on
replicator equations, with both types at equal frequency initially.
(b) Simulation of a finite well-mixed population of agents that
encode the strategies 00 and RT deterministically, with the same
initial conditions as in (a) (50 independent simulations for each of
21 × 21 different parameter combinations). In (a) and (b), red and
green intensity indicates the frequency of strategy 00 and RT in the
population, respectively. The separation between red and green in
region IV is due to the choice of initial condition, and does not
represent a phase boundary.

phenotype (p00 = 0) without any mutations so that the pure
strategies compete, we recapitulate the theoretical results as
well as the replicator equation simulations [see Fig. 2(b)]. If
strategies can be mixed and we allow mutations on p00, we
find p00 → 2ω−1

ε−1 as expected (data not shown). Indeed, it can
be shown that for two-player games, the predicted population
fraction fixed points are equal to the fixed points in the space
of decision probabilities, and that the stability of these fixed
points also coincides [1]. For the three-player game, the fixed
points of deterministic and stochastic strategies also coincide,
but the stability conditions do not.

III. THREE-PLAYER GAME

So far we have studied the adaptive change of genotype
frequencies and expression probabilities, but we have not
addressed the consequences of macroscopic mutations. While
the toxin gene and the resistance gene are usually tightly linked
on the same plasmid [35], cells can acquire resistance to the
toxin without carrying the plasmid, for example by changes to
a receptor or the membrane protein that imports the colicin.
However, such changes are usually costly because the same
proteins are also involved in importing nutrients into the cell.

To take mutations that create new strategies into account,
we introduce the additional type “R0” (the type “0T,” which
we simulate using Darwinian evolution below, does not play
a role here because it is never an ESS), and study how the
possibility of mutating into this type affects the stability of the
fixed points. In a general payoff matrix for the suicide-bomber
game, nonresistant cells suffer an effect $ ! 0 from exposure
to the colicin, and carrying the toxin gene incurs a cost ω while
resistance decreases fitness by δ ! 0. As before, the advantage
of the RT phenotype is ε. The payoff E is now

00
R0
RT





00 R0 RT
1 1 1 − $

1 − δ 1 − δ 1 − δ
1 − δ − ω + ε 1 − δ − ω 1 − δ − ω



 . (11)

With these values, the resistant type R0 is superior to the
resistant toxin producer RT but inferior to the wild type 00
because of the cost of resistance. The dynamics of these
three strains can become nontransitive so that all three strains
can out-compete each other in a classic rock-paper-scissors
(RPS) dynamic [18]. We can study the fixed points and phase
portraits of this game theoretically, as well as via agent-based
simulations. For simplicity, we take $ = 1 as before, and
restrict ourselves to δ = ω (cost of resistance equal to cost
of toxin). Furthermore, we can normalize the payoffs such
that the diagonal vanishes, so that the payoff matrix becomes

E =




0 ω 2ω − 1

−ω 0 ω
ε − 2ω −ω 0



 . (12)

A. Stability and Zeeman classes

The population dynamics of three-player games has been
solved completely [30], and crucially depends on the structure
of fixed points in the interior or on the boundary of the
2-simplex $ defined by the probabilities (p00,pR0,pRT) with
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FIG. 3. Phase portraits of stable dynamics for the three-player
game using payoffs (12). The shaded parameter region ω < ε/(ε + 1)
has an interior fixed point that can be repulsive or attractive. In
Zeeman’s phase portrait pictograms [30], arrows denote the flow
on the boundary of the simplex, solid circles are attractors, and open
circles are repellers. All fixed points on the boundary and the interior
are indicated. The Zeeman classes for each region are indicated in
Table I.

the constraint p00 + pR0 + pRT = 1. Using this 2-simplex, a
simplified phase portrait of the dynamics can be constructed
using a notation depicting attractors and repellers just as
in Fig. 1. Zeeman showed that the dynamics fall into ten
combinatorial classes (up to sign reversal of each element
of the payoff matrix), depending on the number of fixed
points in the interior and on the boundary of the simplex.
Each combinatorial class itself may contain one or more
stable classes giving rise to 19 different “stable” phase
portraits plus their “inverses,” where all flow directions are
reversed and attractors are replaced by repellers and vice versa.
Here, “stable” means that the phase portrait does not change
drastically within a neighborhood of the parameter values
defining the game [30]. The three-player suicide-bomber game
as defined by Eq. (12) displays seven of these classes in
seven regions, as shown in Fig. 3 and listed in Table I.
An interior fixed point only exists for the parameter region
ω " ε

ε+1 , shown shaded in Fig. 3, so that regions III and IV

TABLE I. Zeeman classes [30] for the seven regions with stable
dynamics. Note that regions IIIa and IVa, as well as IIIb and IVb, are
sign opposites; that is, the matrix of signs of entries in the normalized
payoff matrix (up to permutations) is reversed.

Region Zeeman Class

Ia 1
Ib −1
II 2
IIIa 52

IIIb 51

IVa −52

IVb −51

of the two-player game now contain dynamics with a fixed
point, and dynamics without. In region II, the wild type 00
is a stable attractor just as in the two-player game. The only
difference is that there are now many different paths from
strategy RT to 00 that include R0 as an intermediate type.
Region I (corresponding to the prisoner’s dilemma region in
the two-player game) has an interior fixed point (the Nash
equilibrium) for payoff matrix (12) [36]

p00 = ω

ε
, (13)

pR0 = 1 − ω

ε
− ω, (14)

pRT = ω (15)

that is attractive when det E > 0 (region Ia) and repulsive for
det E < 0 [30] (region Ib). For our payoff matrix, the boundary
is given by the line ε = 1, as indicated in Fig. 3. The dynamic
in this region is a rock-paper-scissors (RPS) game that is stable
if ε > 1; that is, the population fractions approach the interior
fixed point given by Eqs. (13)–(15). For ε < 1 the RPS game
is unstable, and we expect to observe heteroclinic orbits that
ultimately pass through the single-strategy fixed points. These
oscillations are similar to those observed by May and Leonard
in the Lotka-Volterra dynamics of three species [37].

The “snowdrift” region of the two-player game is now
divided into region IIIa with a stable fixed point that is
a mixture of RT and 00 only as in the two-player game,
and a region IIIb with a stable interior fixed point given by
Eqs. (13)–(15). The anticoordination region of the two-player
game (regions IVa and IVb of the three-player game) show just
the inverse of the dynamics in regions IIIa and IIIb, as outlined
in Fig. 3. Thus, in region IVb the R0 type is short-lived and the
game reverts to a two-player game with its attendant stability
properties (just as in region IIIa).

A simulation of strategy competition using the replicator
equations validates the phase portraits of the various Zeeman
classes, as seen in Fig. 4(a). For these simulations, we used
starting conditions where all three strategies are equiprobable,
and stopped after a finite number of updates of the equations.
As a consequence, a particular strategy appears to be dominant
for the unstable RPS game [blue in Fig. 4(a), left] even
though in fact the trajectory cycles through the three pure
strategies. The expanding orbits of parameter combination A in
region Ia become shrinking orbits for region Ib (see parameter
combination B), but because the orbits still touch the boundary,
there is a chance of strategy extinction in finite populations.
Parameter combination C in Fig. 4(a) is also in region Ib, but
because the orbits are tighter, extinction is unlikely even in
finite populations. If ε = 1 in region I, the orbits are limit
cycles encircling the fixed points, but this dynamic is not
“stable” in the sense of Zeeman as infinitesimal changes in
the payoffs will change the trajectories qualitatively. Indeed,
Zeeman proved that there are no structurally stable limit cycles
in three-player games [30]. As ε passes through the critical
value ε = 1, the flow exhibits a Hopf bifurcation [38].

Parameter combination D in Fig. 4(a) lies in region IIIb
which has an interior fixed point. This point lies close to
the boundary of region IIIA in which the fixed point is on
the edge (complete extinction of strategy R0). Indeed, the
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FIG. 4. (Color) (a) Left: Dominating strategy as determined by replicator equations as a function of cost ω and benefit ε, where the density
of each pure strategy is indicated by the intensity of the three colors red (00), green (RT), and blue (R0), given the starting condition where each
strategy has 1/3 of the population. Regions as in Fig. 3. Right: Population fraction trajectories obtained from iterating the replicator equations
for four parameter combinations (ε,ω): A = (0.75,0.125),B = (1.25,0.125),C = (1.75,0.375), and D = (1.75,0.625), whose locations are
shown on the left. Arrows indicate the location of the fixed points. (b) Dominating strategies in a finite-population-size agent-based simulation
of competition between pure strategies in a mell-mixed population (left, 20 runs of 5000 updates per pair of parameters, for 21 × 21 parameter
combinations). Right: The trajectories for the four parameter combinations picked in (a) show stable coexistence for points C and D, but
extinction of strategies for A and B. (c) Left: Darwinian evolution of probabilistic strategies in an agent-based simulation at fixed mutation
rate (left, 20 replicates per pair of parameters, 21 × 21 parameter combinations), where colors indicate average fixed point probabilities in the
scheme of (a). The trajectories (right) represent the average probabilities to engage in the plays 00, R0, and RT on an (averaged) line of descent,
not trajectories of population frequencies. Arrows indicate the predicted fixed point. Average of 50 replicate trajectories for 100 000 updates
for each of the example parameters A–D.

equilibrium concentration of strategy R0 for combination D is
pR0 ≈ 0.018.

B. Finite populations

If finite populations of pure strategy mixtures are sim-
ulated using agent-based methods as described earlier for
the two-player game (population size 16 384), the dynamics
are unchanged from the infinite-population-size limit for
the parameter region II. However, the heteroclinic orbits that
we observed in region Ib collapse when populations are finite
(as was noticed previously in Ref. [25] for a generic RPS
game in region Ib), because both 00 and RT go to extinction
at the R0 fixed point [see Fig. 4(b)] if the initial population

consists of each strategy in equal concentration. Because of
the nature of the flow, R0 is the surviving strategy for almost
all initial conditions, reflecting a principle of “survival of the
weakest” discussed recently in the context of cyclic stochastic
games [39]. Interestingly, as we approach the boundary of
region IVb, fortunes are reversed: Now R0 is dispensable and
the game reverts to the two-player coordination game, where
either RT or R0 survive, depending on the initial condition.

Similar dynamics were also observed in experimental pop-
ulations of sensitive, resistant, and toxin-producing bacteria
engaged in an RPS game [18] as long as dispersal was high,
which corresponds to the well-mixed case that we study here.
However, loss of diversity (strategy extinction) can also occur
in region Ia where the fixed point is stable, as long as the
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orbits have a high probability of touching the boundary before
spiraling in. This dynamic is seen for point B in Fig. 4(b). For
region III the finite population size does not alter the phase
portrait appreciably: The fixed point in the interior is stable,
and even when one of the equilibrium concentrations is small
(as is the case for parameter combination D), the minority
strategy does not disappear for the population size we studied.
Of course, for sufficiently small populations, R0 has a chance
of extinction even in region IIIb.

C. Stochastic strategies

As mentioned, cellular strategies in biology are often
stochastic rather than pure. The decision to contribute to the
stalk or the spore in the evolutionary game that Dictyostelium
plays when resources become scarce is fully stochastic,
for example (p ≈ 0.5 in the wild type [17]). This type of
stochasticity is different from simulating errors of execution
and perception [40], which focus on small deviations from the
deterministic scenario, and have been used extensively in the
economical literature (see, e.g., [41]). Stochastic strategies are
often called “mixed” strategies in the literature, but we prefer
not to use this nomenclature because “mixed” often evokes the
idea of a mix of pure strategies (a polymorphic population).
The fixed points of populations that use stochastic strategies
have been studied less extensively than the phase portraits
of deterministic populations, but some important results are
known [42–46]. For example, define a stochastic strategy
S(q) = (q00,qR0,qRT) where the qi are the probabilities for
this individual to engage in the plays i, and let its frequency in
the population be f (q). Then the population mean strategy is

S̄ =
∑

q

f (q)S(q), (16)

where we have assumed a discretization of strategy space
(these averages can be generalized to continuous strategy
spaces; see, e.g., [42,43]).

If p is an ESS of the deterministic game defined by payoff
matrix E, then the population mean (stochastic) strategy S̄ is
a locally stable equilibrium of the mean strategy evolution,
defined by

ḟ (q)(t)
f (q)

= [S(q) − S̄] · ES̄ (17)

if and only if

S̄ = p. (18)

In other words, the fixed points of the deterministic game are
the fixed points (in the sense that the population is “fixed”
at S̄) of the stochastic game [43]. As a consequence, if p
is an ESS, then so is S̄. However, nothing is known (to our
knowledge) about the stability of fixed points of the stochastic
game that are not attractors for the deterministic game. At
the same time, even when the population is fixed at S̄, the
population composition can change neutrally as long as the
average S̄ is preserved.

To simulate the Darwinian evolution of probabilistic
strategies we introduce separate loci for the R and T genes,
encoding the probabilities qR and qT . Thus, a 00 phenotype
is expressed with probability q00 = (1 − qR)(1 − qT ), while

the R0 phenotype has qR0 = qR(1 − qT ) and so forth. While
we therefore also simulate the possibility of a 0T phenotype,
it never plays a dominant role in the dynamics as expected.
As in our simulation of the evolution of the two-player game,
strategies play four random other players in the population
to determine the fitness of the genotype (qR,qT ), which
determines the probability with which this strategy leaves
offspring in the next generation. The probabilities qR,qT can
be viewed as the stochastic decisions encoded by two different
(and independent) genetic pathways with many genes, but
rather than simulating how the genetic networks encode these
probabilities, we evolve them directly.

As before, we evolve the strategies using a death-birth
Moran process, by removing at every update a random 2%
of a population of 1024 genotypes in a well-mixed population,
and replacing them with a set of genotypes that were picked
(probabilistically, according to fitness) from the set of players
that survived the 2% removal (we use a death-birth process
rather than the more common birth-death process to avoid the
awkward case that a genotype produces offspring after its own
death). When a genotype is not replaced, fitness accumulates
from playing more games, but this does not result in a skewed
age distribution as removal is random.

To determine the mean “fixed point” strategy for each of
21×21 parameter configurations [Fig. 4(c), leftmost panel],
we first reconstruct the line of descent (LOD) of each of
20 replicate populations evolved for 500 000 updates, by
picking the dominating strategy genotype and following
its ancestral line all the way back to the seed genotype
(a strategy with qR = qT = 0.5). The line of descent recapit-
ulates the evolutionary history of that particular experiment,
as it contains the sequence of mutations that gave rise to the
successful strategy at the end of the run (see, e.g., [47]). The
LOD also defines a trajectory in strategy space, but rather than
being a smooth curve the LOD is jagged and jumps between
probabilities. When averaging the LODs across runs to obtain
the fixed point, we first discard the last 50 000 updates for each
(in order to make sure that our LOD has coalesced) and then
average the genotypes of the LOD after the first 250 000 up-
dates, in order to ensure that the trajectory settled on the fixed
point (the procedure is described in more detail in Ref. [27]).

To obtain the strategy trajectory S̄ for the four parameter
combinations A–D used earlier, we collect the plays of each
agent in the population at each update [instead of collecting the
frequencies f (q) of each strategy S(q)], as the plays faithfully
recapitulate the genotype in a well-mixed population [27].
The mean population strategy is plotted for the first 100 000
updates of an average of 50 replicate experiments in Fig. 4(c)
(right four panels). As in previous work studying the evolution
of stochastic strategies in the iterated prisoner’s dilemma [27],
the population strategy moves to an evolutionary fixed point.
In the present case (a noniterated game), the fixed point is at
(or close) to the Nash equilibrium of the deterministic game.
While the fixed points B–D are attractors (but not ESSs), fixed
point A is repulsive. For the stochastic game, however, this
fixed point turns out to be an attractor.

In hindsight, this is not surprising when the competition is
viewed in terms of an adaptive dynamics formalism (see, e.g.,
[48,49]) as the population does not engage in a competition
between three strategies that exclude each other. Rather,
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the population is fairly monomorphic, centered around the
single stochastic strategy with probabilities given by the Nash
fixed point. Thus, rather than witnessing positive frequency-
dependent selection in a competition of three types, we see
stable mutation-selection balance of a single type.

We note that the diversity of plays that we observe
appears to contradict in part previous conclusions that local
dispersal promotes diversity in microbial dynamics of the RPS
type [18]. These authors concluded that spatial interaction
environments (nearest-neighbor as opposed to well-mixed)
promote diversity, observing coexistence when a well-mixed
population simulation predicted extinction of two out of
the three strategies, for parameter combinations that we
estimate puts their population in the region IB or IVb, with
a repelling fixed point. Yet, when phenotypes are expressed
probabilistically, strategies are stabilized. However, while we
know that at least the decision to express the “T” type is
stochastic in microbial colicin phenotypes, the expression of
the “R” type may be deterministic. Thus, our simulations
cannot be directly compared to the experiments of Ref. [18].
We should also keep in mind that we have not explicitly taken
into account the effect of spatial structure [33] here, but instead
simply varied the payoff ε. However, the loss of diversity was
predicted to occur in the well-mixed mode, which we show to
be stable instead when decisions are probabilistic.

IV. CONCLUSIONS

We have studied the fixed points and phase portraits of
populations engaged in game-theoretical dynamics inspired
by the microbial “suicide bomber” game. Depending on
the physical parameter values that determine the payoffs of
different decisions, all the well-known games of the two-player
scenario are covered. When extending to a three-player game
by decoupling resistance from toxin production, we study the
fixed points and stability not of all possible three-player games,
but a subset of seven of 38 possible phase portraits. When
strategies are allowed to be stochastic rather than deterministic,
we observe that the population mean strategy moves toward
the deterministic strategy fixed point, but repelling fixed
points become attractive when decisions are probabilistic.
We stress again that the original ESS concept is lacking for
the three-player game, as none of the fixed points (even the
attractive ones) are ESSs in the sense of Maynard Smith [1].

It is difficult to ascertain which dynamics we should expect
in natural populations, as the cost of production of the colicin
and the cost of resistance vary considerably [31,32]. In general,
we should expect that the costs are different, and that the
efficiency of killing due to bacteriocins is not 100%, so that
the more general model (11) should be used. But given these
caveats, our predictions of evolutionary fixed points as a
function of cost and benefit parameters should be testable
by dedicated experiments of the sort described in Ref. [18],
by changing the parameters of the evolutionary game (for
example, by experimentally varying the cost of resistance or
benefit of the toxin). Recently, Nahum et al. [32] have studied
the evolution by natural selection of the parameters that define
the game, and found that the resistant type (here, type R0)
tended to evolve toward more restrained interactions (higher
δ) compared to populations that evolved in the absence of
interactions, at least in the case that migration was restricted
so that spatial effects are present. This appears to be a direct
verification of the “survival of the weakest” principle [39,50]
that is applicable in environments where finite population
size introduces stochasticity, in parameter region Ib of the
three-player game. Clearly it will be interesting to see more
general evolutionary trajectories within the ω,ε space (or the
more general δ,ω,ε space), under different realistic constraints
for spatial interactions, as well as costs of resistance and
toxin production that are constrained to lie within biologically
reasonable assumptions. It has previously been shown that
changing environmental conditions can change the dynamics
from a prisoner’s dilemma to a snowdrift game (moving from
region I into region III in Fig. 1) in the two-player game
[14,51]. It would be interesting to test whether populations
can be coaxed to move from one Zeeman class to another
in the three-player game, simply by changing the selective
pressures acting on the system.
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